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Abstract: We study the conditions under which D-brane instantons in Type II orien-

tifold compactifications generate a non-perturbative superpotential. If the instanton is

non-invariant under the orientifold action, it carries four instead of the two Goldstone

fermions required for superpotential contributions. Unless these are lifted, the instan-

ton can at best generate higher fermionic F-terms of Beasley-Witten type. We analyse

two strategies to lift the additional zero modes. First we discuss the process of instan-

tonic brane recombination in Type IIA orientifolds. We show that in some cases charge

invariance of the measure enforces the presence of further zero modes which, unlike the

Goldstinos, cannot be absorbed. In other cases, the instanton exhibits reparameterisation

zero modes after recombination and a superpotential is generated if these are lifted by suit-

able closed or open string couplings. In the second part of the paper we address lifting the

extra Goldstinos of D3-brane instantons by supersymmetric three-form background fluxes

in Type IIB orientifolds. This requires non-trivial gauge flux on the instanton. Only if the

part of the fermionic action linear in the gauge flux survives the orientifold projection can

the extra Goldstinos be lifted.
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1. Introduction

Since the recent observation that D-brane instantons in Type II orientifolds can induce

an important new class of effective couplings [1 – 4], a lot of effort has gone into further

exploring these and other interesting non-perturbative effects [5 – 16], with directly related

earlier work including [17, 18].

In the case of Type IIA orientifolds with intersecting D6-branes, the relevant non-

perturbative objects are Euclidean D2-brane instantons, short E2-instantons, wrapping

special Lagrangian three-cycles of the internal Calabi-Yau space [1, 3]. An analysis of the

zero mode structure of such instantons can be performed with the help of boundary CFT

methods as originally applied to the D3 − D(−1) system in [19, 20]. This has shown that
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under suitable circumstances the E2-instanton can generate couplings in the effective four-

dimensional superpotential which are forbidden perturbatively as a consequence of global

U(1) selection rules. The relevant instanton effect is genuinely stringy in that it cannot be

understood in terms of four-dimensional gauge instantons.

The imprints of this phenomenon in various corners of the string landscape are man-

ifold. Of particular phenomenological interest has been the generation of Majorana mass

terms for right-handed neutrinos [1, 3, 13 – 15]. Besides allowing for such terms in the

first place, instanton effects admit a natural engineering of the intermediate mass scale

required for these Majorana terms in the context of the see-saw mechanism. Other ap-

plications include the generation of hierarchically small µ-terms [1, 3] or a modification

of the family structure of Yukawa couplings [8]. In [7], the generation of perturbatively

forbidden 10 10 5H couplings in SU(5) GUT models based on intersecting branes is dis-

cussed. Globally defined examples of an instanton induced lifting of unwanted chiral exotics

are presented in [10, 7]. The benefits of instanton effects for realising metastability and

supersymmetry breaking in explicit setups are explored in [4 – 6].

Using the CFT description for the computation of E2-instanton generated superpoten-

tial couplings proposed in [1], the non-perturbative Majorana mass matrix for right-handed

neutrinos was determined in detail for a local GUT-like toroidal brane setup in [15]. An

extensive search for realisations of this effect within the class [21] of global semi-realistic

Gepner model orientifolds has been performed in [13], followed by further phenomenological

studies in [14].

The main obstacle for finding appealing global string vacua exhibiting a non-

perturbative superpotential of the described type are the severe restrictions on the zero

mode structure of the instanton, which will be reviewed in detail in section 2 of this article.

At least in the absence of other mechanisms to lift the fermionic zero modes associated

with deformations of the cycle, the instanton has to be rigid. Unfortunately, for toroidal

orbifolds, a popular playground for Type IIA model building, the only known examples of

such cycles are the ones on the Z2 × Z
′
2 orbifold analysed in [22 – 24] and used in the local

setup of [15].

A second complication, which is the central topic of this paper, occurs for E2-instantons

on non-invariant cycles, called U(1) instantons in the following. It is given by the appear-

ance of four Goldstino modes θα, τ α̇, α, α̇ = 1, 2 instead of the two Goldstinos θα required

for the generation of a superpotential [11 – 13]. If the instanton lies on top of an appropriate

orientifold plane, the two extra modes τ α̇ are projected out and the instanton can induce

a superpotential term. Given its significance for the topography of the landscape of string

vacua, it is obviously quite important to investigate if this is actually the only configuration

of D-brane instantons which induces quantum corrections of the superpotential.

The key point is to decide if there exists a way to lift the two extra Goldstinos τ α̇

other than by projecting them out. Generally speaking, this requires contact terms in

the instanton moduli action involving the modes τ α̇ such that they can be soaked up in

the path integral without giving rise to higher derivative or higher fermionic terms in the

non-perturbative couplings.

We investigate two different strategies to achieve this. In section 3, we analyse cou-
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plings of the τ α̇ modes to massless states in the E2 − E2′ sector, which likewise have to

be absorbed. As a consequence of the D-term constraints for the bosonic zero modes the

lifting of these modes requires the presence of a non-vanishing Fayet-Iliopoulos term. The

latter arises after slightly deforming the background such that the Ξ−Ξ′ pair of instantonic

branes recombines.

We describe in detail the zero mode structure of the U(1) instantons and how it changes

by the process of condensation of the bosonic modes. We find that for chiral Ξ − Ξ′

recombination, due to charge conservation the recombined object always contains extra

fermionic zero modes which cannot be absorbed by pulling down either closed string or

matter fields.

However, for non-chiral Ξ − Ξ′ recombination one obtains an O(1) instanton with

deformations. In the Type I dual model it corresponds to an E1-instanton which wraps

a holomorphic curve moving in a family as discussed by Beasley and Witten in [25]. We

show that such instantons can generate, in addition to the results of [25], multi-fermion

couplings also for matter field superpotentials and under certain circumstances can also

contribute to the superpotential. Independently of the issue of instanton recombination,

in the absence of E2 − E2′ modes the measure of rigid U(1) instantons is just right to

generate possibly open string dependent multi-fermion F-terms which correct the metric

on the complex structure moduli space. This is the subject of section 4.

An alternative mechanism to eliminate the τ α̇ modes, speculated upon already in the

literature [12, 13, 6], consists in turning on supersymmetric background fluxes. The hope

would be that in their presence the instanton does not feel the full N = 2 supersymme-

try algebra preserved locally away from the orientifold, but only the N = 1 subalgebra

preserved by the fluxes. This should then result in only two as opposed to four Goldstinos.

The lifting of reparametrisation zero modes of M5-brane or Type IIB D3-brane in-

stantons has been studied in detail [26 – 31] (see also [32 – 34]). The analysis consists in

determining the bilinear couplings of the fermionic zero modes to the background fluxes

responsible for their lifting. In section 5 we recall, building upon the expressions for the

fermion bilinears derived in [28, 30], that in Type IIB orientifolds a lifting of the τ α̇ of

E3-instantons is not possible as long as one sticks to supersymmetric three-form flux. As

we then show, this generically continues to hold even for E3-instantons with gauge flux

which are mirror symmetric to Type IIA U(1) instantons at general angles. A possible

exception are compactifications with divisors allowing for anti-invariant two-cycles. We

illustrate this point in a local example and finally summarize our findings in section 6.

2. Instanton generated F-terms

We are interested in N = 1 supersymmetric Type II orientifold compactifications to four

dimensions. While what we have to say in the sequel applies, mutatis mutandis, equally

well to Type IIA and Type IIB constructions, we focus here for definiteness on the first case.

We will therefore be working in the context of intersecting D6-brane models (see [35 – 40]

for reviews). The relevant spacetime instantons are given by E2-branes wrapping special

Lagrangian three-cycles Ξ in the Calabi-Yau so that they are point-like in four-dimensional
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N = 1 N = 1′

θα τα

θ
α̇

τ α̇

Table 1: Universal fermionic zero modes θα, τ α̇ (τα, θ
α̇
) of an (anti-)instanton associated with the

breaking of the N = 1 SUSY algebra preserved by the orientifold and its orthogonal complement

N = 1′.

spacetime. Part of the following two subsections 2.1 and 2.2 reviews some of the findings

of [1, 3], while in 2.3 we discuss higher fermionic F-terms.

2.1 E2-instanton zero modes

There are two kinds of instanton zero modes according to their charge under the gauge

groups on the D6-branes.

The uncharged zero modes arise from the E2-E2 sector. They always comprise the

universal four bosonic Goldstone zero modes xµ due to the breakdown of four-dimensional

Poincaré invariance. Generically, for instantons away from the orientifold fixed plane, these

come with four fermionic zero modes θα and τ α̇ [11 – 13]. This reflects the fact that the

instanton breaks half of the eight supercharges preserved by the Calabi-Yau manifold away

from the orientifold fixed plane. Due to its localisation in the four external dimensions, an

instanton breaks one half of the N = 1 supersymmetry preserved by the orientifold and

one half of its orthogonal complement inside the N = 2 supersymmetry algebra preserved

by the Calabi-Yau. As displayed in table 1, the θα are the Goldstinos associated with

the breakdown of the first N = 1 supersymmetry, while the τ α̇ are associated with the

orthogonal N = 1′ algebra.1 The internal part of their vertex operator is essentially given

by the spectral flow operator of the worldsheet N = (2, 2) superconformal theory, see

eq. (B.9) and (B.1) in appendix B.

Besides there are b1(Ξ) complex bosonic zero modes cI , I = 1, . . . , b1(Ξ), related to

the deformations and Wilson lines of the E2-instanton. Away from the orientifold plane,

each of these is accompanied by one chiral and one anti-chiral Weyl spinor, χα
I and χα̇

I .

Furthermore there arise zero modes at non-trivial intersections of the instanton E2 with

its image E2′; they will be discussed in detail in section 3.1.

In addition to these uncharged zero modes, there can arise fermionic zero modes from

intersections of the instanton Ξ with D6-branes Πa. If the instanton is parallel to Πa, there

are also massless bosonic modes in this sector. The detailed quantisation of these charged

zero modes, both for chiral and non-chiral intersections, is described in [15]. Let us focus

for brevity on chiral intersections. An important point made in [15] is that states in the

E2−D6 sector are odd under the GSO projection contrary to the GSO-even states in the

D6−D6 brane sector. In particular, a positive intersection IΞa > 0 of the instanton and a

D6-brane wrapping the respective cycles Ξ and Πa hosts a single chiral fermion (i.e. with

world-sheet charge Qws = −1
2) in the bifundamental representation (−1E , a). The strict

1Note that what was called θ
α̇

in [15] is now denoted by τ
α̇ to make its spacetime interpretation clearer.
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zero modes RepsQws
number

λa,I (−1E , a)−1/2 I = 1, . . . , [Ξ ∩ Πa]
+

λa,I (1E , a)−1/2 I = 1, . . . , [Ξ ∩ Πa]
−

λa′,I (−1E , a)−1/2 I = 1, . . . , [Ξ ∩ Π′
a]

+

λa′,I (1E , a)−1/2 I = 1, . . . , [Ξ ∩ Π′
a]

−

Table 2: Fermionic zero modes at chiral E2 − D6 intersections for non-invariant E2-instantons.

chirality of the charged fermions is essential for the existence of holomorphic couplings

between these modes and open string states in the moduli action and will also play a key

role in the present analysis. For a generic instanton cycle Ξ away from the orientifold,

this gives rise to the charged zero mode spectrum summarised in table 2. As a result, the

instanton carries the charge [1, 3].

Qa(E2) = Na Ξ ◦ (Πa − Π′
a) (2.1)

under the gauge group U(1)a.

2.2 Generation of superpotentials

The instanton measure contains all these zero modes. Thus in order to contribute to the

holomorphic superpotential, whose measure is
∫

d4x d2θ, the instanton has to meet several

constraints.

Most importantly, the presence of the anti-chiral Goldstinos τ α̇ for generic instantons

not invariant under the orientifold projection2 prevents the generation of superpotential

terms other than those corresponding to gauge instantons [11 – 13]. The latter case is

special in that the instanton wraps the same three-cycle as one of the D6-branes [9]. In this

situation, the τ α̇ play the role of Lagrange multipliers for the bosonic ADHM constraints

and can consistently be integrated out [20]. For instantons not parallel to any of the

D6-branes, these couplings in the moduli action do not exist since there are no massless

bosons in the E2 − D6 sector. The most straightforward way to eliminate the τ α̇ is to

project them out under the orientifold action [11 – 13]. Concretely, if one chooses Ξ = Ξ′

the universal zero modes xµ, θα, τ α̇ are subject to the orientifold action Ωσ in the way

detailed in appendix A. Depending on the orientifold action one obtains an SO(N) or

USp(N) gauge group. For the latter case the zero modes xµ, θα are anti-symmetrised and

the modes τ α̇ gets symmetrised, while for the SO(N) instanton xµ, θα are symmetrised and

τ α̇ get anti-symmetrised.

It follows that single E2-instantons with orthogonal gauge group (called O(1) instan-

tons in the sequel) can give rise to F-terms in the effective action since the universal part

of their zero mode measure is of the form
∫

d4x d2θ.

In order for this F-term to be of the usual superpotential form, there may be no

further uncharged fermionic zero modes present. This situation corresponds to an instanton

wrapping a rigid cycle Ξ with b1(Ξ) = 0. Alternatively, the additional fermionic modes

2These will be referred to as U(1) instantons in the sequel.
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zero modes Reps. number

λa,I a I = 1, . . . , [Ξ ∩ Πa]
+

λa,I a I = 1, . . . , [Ξ ∩ Πa]
−

Table 3: Fermionic zero modes at chiral E2 − D6 intersections for invariant E2-instantons.

have to be absorbed by some interaction in the instanton moduli action such that they can

be integrated out without generating higher derivative terms. Known examples of such

interactions involving the closed string sector are the quartic coupling to the curvature on

the instanton moduli space [41, 42], provided the latter is non-trivial, or the coupling to

suitable background fluxes (see section 5). In section 3.4 we will describe another way to

lift a pair of reparametrisation modes through couplings to the open string sector.

Finally, also the charged zero modes appear in the measure and have to be soaked up.

For an Ωσ invariant instanton, i.e. Ξ′ = Ξ, the charged zero modes and their representations

are displayed in table 3 and lead to an instanton U(1)a charge

Qa(E2) = Na Ξ ◦ Πa. (2.2)

A careful analysis of their gs scaling in [1, 15] revealed that for superpotential couplings this

has to happen via suitable disk (as opposed to higher genus) amplitudes involving precisely

two λ modes and in addition suitable matter fields - provided these amplitudes induce a

Yukawa-type contact term in the instanton moduli action. As a result, E2-instantons

induce superpotential terms of the form [1, 3].

W ≃
M∏

i=1

Φai,bi
e−SE2 , (2.3)

involving suitable products of open string fields Φai,bi
. For details of the rules of their

computation see [1].

2.3 Generation of higher fermionic F-terms

Our discussion has hitherto focussed on O(1) instantons which are either rigid or whose

fermionic reparametrisation modes have paired up appropriately such that they give rise

to genuine superpotential terms.

Alternatively, there are situations where these additional zero modes induce so-called

higher fermionic F-term couplings in the effective action. In the dual Type I/heterotic

model this effect was first described in [25].3 There it arises for E1/worldsheet instantons

moving in a family. On the type IIA side, this corresponds to non-rigid O(1) instantons

such that the chiral reparametrisation modulini χα
I , I = 1, . . . , b1(Ξ) are anti-symmetrised

and therefore projected out under the orientifold action. We will sometimes refer to them

as instantons with deformations of the first kind.4 The resulting uncharged part of the

3For another example in the context of heterotic M-theory see [43].
4This is to be contrasted with the case that the chiral deformation fermions survive the projection. As

descrbed in [16] such a situation can generate corrections to the gauge kinetic function.
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measure takes the form
∫

d4x d2θ
∏

I

cI cI χα̇
I . (2.4)

Beasley and Witten found that such instantons can generate higher fermionic couplings

for the closed string moduli fields [25]. In superspace notation, these are encapsulated in

interactions of the form

S =

∫
d4x d2θ wij (Φ)Dα̇

Φ
iDα̇Φ

j
(2.5)

for the simplest case that the instanton moves in a one-dimensional moduli space. Note

that supersymmetry requires a holomorphic dependence of wij (Φ) on the superfields Φ.

Consider first the case of an E2-instanton with b1(Ξ) = 1 and no further charged zero

modes in the E2 − D6 sector. Denoting by T = T + θαtα the N = 1 chiral superfield

associated with the Kähler moduli, we can absorb the instanton modulini by pulling down

from the moduli action two copies of the schematic anti-holomorphic coupling χα̇tα̇. In

general the open-closed amplitude 〈χα̇tα̇〉 does not violate any obvious selection rule of

the N = (2, 2) worldsheet theory and is therefore expected to induce the above coupling.5

Similarly, the two θ-modes can be soaked up by the holomorphic coupling θαuα involving

the fermionic partners of the complex structure moduli encoded in the superfield U =

U +θαuα. This results in a four-fermion interaction of the schematic form e−SE2 uαuα t
α̇
tα̇.

Note that the coupling of the complex and Kähler structure modulini only to the universal

and reparametrisation zero modes, respectively, is a consequence of U(1) worldsheet charges

of the associated vertex operators.

The derivative superpartner of the above four-fermi term arises upon integrating out

two copies of the term

θσµχ∂µT , (2.6)

which follows from evaluating the amplitude 〈θα χα̇ T 〉 as demonstrated in appendix B.

All this can be summarized in superspace notation by writing

S =

∫
d4x d2θ e−U(Ξ) fi,j

(
eTi , e∆i

)
Dα̇T iDα̇T j

, (2.7)

where U(Ξ) is associated with the specific combination of complex structure moduli appear-

ing in the classial instanton action and the holomorphic function fi,j depends in general

on the Kähler and open string moduli of the D6-branes ∆i.

In the presence of a suitable number of charged λ zero-modes there exist, in addition

to these closed string couplings, terms which generate higher fermi-couplings also for the

matter fields. Consider again for simplicity the case b1(Ξ) = 1. If the Chan-Paton factors

5In particular, the total U(1) worldsheet charge is conserved. Still there might be situations, such as

factorizable 3-cycles on (T 2)3, where some of the individual U(1) charges are violated by this coupling. For

a generic background, though, the couplings need not be vanishing, as we demonstrate for the example of

a non-factorizable T
6 in appendix B.
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Figure 1: Absorption of θ and χ̄-modes leading to F-terms. The superscripts denote the ghost

picture.

and worldsheet selection rules only allow the λ modes to couple holomorphically to the

chiral open string superfields, as for the generation of a superpotential, the instanton

induces an interaction as in (2.7), but with e−U(Ξ) replaced by e−U(Ξ)
∏

ai,bi
Φai,bi

.

For suitable configurations, the action can also pick up derivative terms directly involv-

ing the open string fields. For this to happen the instanton moduli action has to contain

couplings of the form6

χα̇
1/2λ

a
−1/2 (ψ1/2)α̇ λ

b
−1/2, (2.8)

where the fermionic matter field ψ
α̇
1/2 lives at the intersection D6a − D6b and lies in the

anti-chiral superfield Φ = φ + τψ, see figure 1.

Integrating out two copies of this interaction term brings down the fermion bilinear

ψ1/2ψ1/2. In addition, the two θα modes again pull down a bilinear of chiral fermions uα

or, in the presence of more λ modes, ψα
ab, as in the case of superpotential contributions.

This induces again a four-fermi coupling. Alternatively, we can absorb one pair of θαχα̇ in

a coupling of the form

θα
3/2 χα̇

1/2 λa
−1/2 φ−1 λ

b
−1/2. (2.9)

After bringing the φ−1 into the zero ghost picture this clearly generates a derivative coupling

of the form θσµχλa ∂µφλ
b
. Integrating out two copies of this term yields the derivative

superpartner to the above four-fermi term.

3. Instanton recombination

As just reviewed, for the case of E2-instantons in Type IIA orientifolds we know that single

instantons wrapping rigid special Lagrangian three-cycles invariant under the orientifold

6The subscripts denote the worldsheet U(1)-charges, which are obviously conserved. The actual presence

of this contact term can easily be checked, in the context of toroidal orbifolds, by a computation analogous

to those performed in [15].
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projection and carrying O(1) gauge group have the right zero mode structure
∫

d4x d2θ

to contribute to the superpotential. Under mirror symmetry to the Type I string these

objects are mapped to E1-instantons wrapping isolated curves on the mirror Calabi-Yau.

The contribution of such objects to the superpotential has been discussed in a couple of

papers [44, 25].

For D6-branes it is known that under certain circumstances a pair of D6-D6′ branes

can recombine [45] into a new sLag D6-brane which obviously wraps an Ωσ invariant three-

cycle.7 If a similar story also applies to pairs of E2-E2′ instantonic branes, the recombined

objects would be candidates for new O(1)-instantons contributing to the superpotential.

For example if one starts with an E2-instanton wrapping a factorizable cycle on a toroidal

orbifold, the cycle wrapped by the recombined instanton would no longer be factorizable;

still one could hope to determine the instanton contribution by appropriate deformation

of the original instanton moduli action. In the mirror dual situation, the resulting objects

are E5-instantons equipped with a vector bundle W defined via the non-trivial extension

0 → L → W → L∗ → 0 (3.1)

of the two line bundles L and L∗.

In this section we investigate whether the naive expectation that such recombined

O(1)-instantons exist is actually correct.

3.1 Zero mode structure on U(1) instantons

Consider a U(1)-instanton wrapping a general rigid cycle Ξ 6= Ξ′. From the E2 − E2 and

E2′ − E2′ sectors we now have the zero mode measure
∫

d4x d2θ d2τ . (3.2)

As described in the previous section, if such an instanton also intersects the D6-branes

present in the model, this yields the fermionic zero-modes listed in table 2. From there,

the overall U(1)E charge of these matter zero modes can be read off,

∑

i

QE(λi) =
∑

a

Na

(
−(Ξ ∩ Πa)

+ + (Ξ ∩ Πa)
− − (Ξ ∩ Πa′)+ + (Ξ ∩ Πa′)−

)

= −
∑

a

Na Ξ ◦ (Πa + Πa′) = −4 Ξ ◦ ΠO6. (3.3)

In the last line we have used the tadpole cancellation condition.8 This shows that in a

globally consistent model the total U(1)E charge of all matter zero modes is proportional

to the chiral intersection between the instanton and the orientifold plane. For an Ωσ

invariant instanton this last quantity vanishes, whereas for a generic U(1) instanton it does

not.

7For brane recombination in the context of D6-brane model building see e.g. [46 – 48].
8Notice that ΠO6 denotes the total homological charge of all orientifold fixed planes present in the

background. In what follows we will always refer to the effective orientifold projection which arises after

taking into account the contribution from all different sectors, which may be of different types individually.
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zero mode (QE)Qws
Multiplicity

m,m (2)1 ,(−2)−1
1
2 (Ξ′ ◦ Ξ + ΠO6 ◦ Ξ)

µα̇ (−2)1/2
1
2 (Ξ′ ◦ Ξ + ΠO6 ◦ Ξ)

µα (2)−1/2
1
2 (Ξ′ ◦ Ξ − ΠO6 ◦ Ξ)

Table 4: Charged zero modes at an E2 − E2′ intersection.

If Ξ ◦ ΠO6 6= 0, there must be additional charged zero modes in order for the zero

mode measure to be U(1)E invariant. Indeed there are also zero modes from the E2 −
E2′ intersection. This is the open string sector which is invariant under Ωσ and gets

symmetrized or anti-symmetrized (see appendix A) . Taking into account that the sign of

the orientifold projection changes from Dp-Dp to D(p − 4)-D(p − 4) sectors, for a single

U(1) instanton we get the zero modes shown in table 4.

For concreteness we consider from now on the two simplest non-trivial cases.

Case I

The first case has intersection numbers

Ξ′ ◦ Ξ = ΠO6 ◦ Ξ = 1. (3.4)

It corresponds to a projection as would arise e.g. on T 6/Z2 in the presence of a single

O−-plane. We get two additional bosonic zero modes m and m and two additional

fermionic ones µα̇. Comparing with (3.3), we find that indeed the total U(1)E charge

of zero modes vanishes. The charge of the two µα̇ zero modes precisely cancels against

the sum over all matter field zero modes.

This analysis reveals that in a globally consistent model it is not possible to wrap an

E2-instanton on a cycle Ξ 6= Ξ′ without picking up additional charged zero modes λi.

Their U(1)E charge is guaranteed to cancel the U(1)E charge of the E − E′ modes

such that the resulting zero mode measure,9

∫
dMI =

∫
d4x d2θd2 τ dm dm d2µα̇

︸ ︷︷ ︸
QE=4

∏

b

dλb

︸ ︷︷ ︸
QE=−4

(3.5)

is U(1)E invariant.

Case II

The second case has intersection numbers

Ξ′ ◦ Ξ = 1, ΠO6 ◦ Ξ = −1. (3.6)

Here we get no extra bosonic zero modes and only the two fermionic ones µα. Unlike

the previous case, this is due to a projection as would arise e.g. in the presence of

9Note the inverse scaling behaviour of the Grassmann numbers.
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a single O+-plane. In such a situation it is not possible to cancel the tadpoles in

a supersymmetric way. Nonetheless, we can perform a similar zero mode analysis.

Again the condition (3.3) tells us that there are extra fermionic matter zero modes

whose U(1)E charge is equal to QE = −4. The resulting zero mode measure reads
∫

dMII =

∫
d4x d2θ d2τ d2µα

︸ ︷︷ ︸
QE=−4

∏

a

dλa

︸ ︷︷ ︸
QE=4

. (3.7)

3.2 Recombination of chiral E2 − E2′ instantons

The question we would like to address now is whether one can absorb the zero modes for the

U(1) instantons in such a way that contributions to the superpotential W are generated.

The expectation that this might be the case arises from the analogous situation for inter-

secting D6-branes, where a slight deformation of the complex structure moduli induces a

non-vanishing Fayet-Iliopolous term on the D6-worldvolume leading to condensation of the

tachyonic charged matter fields [45]. This brane recombination process preserves the topo-

logical charge of the intersecting D6 − D6′ branes and therefore yields a supersymmetric

brane wrapping a three-cycle which is invariant under Ωσ.

Consider first the case I from the last section. Here we have the bosonic zero modes

m and m, which appear in a D-term potential of the form

SE2 = (2m m − ξ)2. (3.8)

The complex structure dependent Fayet-Iliopoulos parameter ξ is proportional to the angle

modulo 2 between the cycle Ξ and its image Ξ′ and vanishes for supersymmetric configu-

rations. Starting from a supersymmetric situation with ξ = 0 one can always deform the

complex structure to obtain ξ < 0 or ξ > 0 at least for small ξ. Since the geometry of the

internal cycle is independent of whether it is wrapped by a D6-brane or an E2-instanton, we

argue that the FI term is forced upon us even in the absence of four-dimensional dynamical

gauge fields associated with the abelian gauge group on the instanton.

The D-term constraint resulting from (3.8) is

m m =
1

2
ξ (3.9)

and has to be implemented by a delta function in the instanton measure. It is useful to

parametrise the complex boson m as

m = |m| eiα. (3.10)

Note that the D-flatness condition as such does not constrain the phase α. The latter

can be absorbed by fixing the gauge with respect to the U(1)E symmetry under which the

instanton measure (3.5) is invariant.

It follows that the bosonic part of the instanton measure takes the form
∫

d4x d|m| |m| δ
(
|m|2 − ξ/2

)
. (3.11)
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As ξ becomes positive, the bosonic m modes get tachyonic, signalling an instability towards

condensation of the tachyon such that the D-term constraint is satisfied. In the upstairs

geometry this corresponds to recombination of the cycle Ξ∪Ξ′ (recall that upstairs Ξ and

Ξ′ are not identified) to the unique sLag Ξ̃ with homology class equal to [Ξ] + [Ξ′] and

ξnew = 0 [49]. Note that Ξ̃ is rigid if Ξ (and Ξ′) is rigid [49], i.e. the instanton wrapping it

exhibits no uncharged zero modes apart from the universal ones.

Now we have to determine what happens to the fermionic zero modes once the bosonic

ones condense. As our analysis of the relevant amplitudes in appendix B shows, the in-

stanton moduli action contains the term

SE2 = m τ α̇ µα̇, (3.12)

which means that after m gets a VEV the τ and µ modes pair up. After bringing down

two copies of this terms and integrating out the fermionic zero modes, one is left with the

measure
∫

dMI =

∫
d4x d2θ

∏

a

dλa

∏

b

dλb

∫
d|m| |m|3 δ

(
|m|2 − ξ/2

)
. (3.13)

This is encouraging as with the τ -modes dropping out everything seems to point towards a

superpotential contribution. It only remains to absorb the matter zero modes λa, λb which

were forced upon us by U(1)E invariance of the zero mode measure. Recall that the sum

of all charges of these fields is QE =
∑

a QE(λa) +
∑

b QE(λb) = 4. It is clear that pairs of

such zero modes with opposite U(1)E charge can generate the usual matter field couplings

of the type

λa φab λb, (3.14)

but there will always be the surplus of four zero modes of type λb.

As shown in figure 2,10 due to the U(1)E charge the only way to absorb these extra λ

zero modes is via couplings of the type

m−1 λ
′−1/2

b

∏
φ1

bici
λ
−1/2
c (3.15)

always involving the field m. In (3.15) the upper index indicates the world-sheet charge

Qws. Since all the fields except m are chiral (in the sense of the N = 2 world-sheet super-

symmetry) and m itself is anti-chiral, the chiral ring structure tells us that all couplings of

type (3.15) are vanishing : When we apply the picture changing operator to m−1 we do not

pick up the right pole structure for a non-zero amplitude [50]. On the other hand, with no

additional matter field φ in (3.15), the amplitude is vanishing right away due to violation

of the U(1) world-sheet charge.

Therefore, we conclude that in contrast to naive expectations, the recombined E2′−E2

instanton cannot contribute to the superpotential. There always remain four charged

fermionic zero modes which cannot be absorbed in a chiral manner.

10Figure 2 displays the case with no additional matter field, namely < m̄ λ̄ λ̄ >.
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’

λ1

λ2

D6
E2

E2

m

b

b

b

Figure 2: Absorption of λb zero modes.

For case II there are no bosonic zero modes from the E2′ − E2 intersection and

therefore no brane recombination. One only has the fermionic zero modes µα of U(1)E
charge QE = 2. In this case we can write down the four-fermion coupling

θ3/2
α (µα)−1/2 λ′−1/2

a λ−1/2
a , (3.16)

where again upper indices denote the U(1)ws charges. Therefore, two such couplings can

absorb the eight appearing zero modes θ, µ, λi
a, (λ′

a)
i so that one is only left with the

measure
∫

dMII =

∫
d4x d2τ

∏

a

dλa

∏

b

dλb , (3.17)

where the total U(1)E charge of all the matter zero modes λa and λb vanishes. There

is no way to absorb the remaining τ modes involving open string operators: Clearly no

superpotential terms are generated, as couplings like

(τ α̇)−3/2 λ
−1/2
a (ψα

ab)
−1/2 λ

−1/2
b (3.18)

are not allowed by Lorentz invariance and non-holomorphic interactions of the form

(τ α̇)−3/2 λ
−1/2
a (ψ

α̇
ab)

1/2 λ
−1/2
b (3.19)

vanish as a consequence of U(1) worldsheet charge violation. By contrast, it is possible to

absorb the τ - modes through couplings to anti-chiral fermions in the closed string sector

of the form 〈τ α̇χα̇〉, which will be discussed in section 4. Clearly, the induced interactions

are non-holomorphic and thus non-supersymmetric. This is however no wonder since, as

we recall, the very presence of the effective O+-plane leading to this kind of orientifold

projection does not admit supersymmetric tadpole cancellation.

We conclude that in contrast to expectations based on spacetime-filling brane recombi-

nation processes, instanton recombination does not lead to new O(1) instantons which can

contribute to the superpotential. The reason is that due to U(1)E charge conservation and
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zero mode (QE)Qws

m,m (2)1 ,(−2)−1

ρα̇ (−2)1/2

n, n (−2)1 ,(2)−1

να̇ (2)1/2

Table 5: Charged zero modes at non-chiral E2 − E2′ intersections on top of an O6−-plane.

the tadpole cancellation conditions there arises a net number of charged fermionic matter

zero modes which cannot be absorbed by chiral couplings.

For the Type IIB dual orientifold models this observation implies that magnetised

E5 − E5′ recombination, i.e. instantons carrying extensions (3.1) of line bundles, do not

generate superpotential contributions either. The only known contributions in this case

come from E1-instantons wrapping holomorphic curves on the mirror Calabi-Yau manifold.

3.3 Recombination of non-chiral E2 − E2′ instantons

The deeper reason why chiral E2 − E2′ intersecting instantons as in case I do not lead,

after brane recombination, to O(1) instantons seems to be that this E2−E2′ system carries

charge along the “directions” of the orientifold O6− plane. In the Type IIB dual situation

this means that the magnetised E5 − E5′ system carries E5-brane charge.

Consequently, it may be more promising to start with a magnetised E3 − E3
′
system

which after brane-recombination only contains E1-charge. Such a system necessarily has

E3 ◦ E3′ = 0 and can only support vector-like zero modes on the intersection. This

immediately implies that there are no U(1)E charged matter zero modes necessary to

ensure U(1)E invariance of the zero mode measure.

The simplest non-trivial case involves one vector-like pair of zero modes, i.e.

[Ξ′ ∩ Ξ]+ = [Ξ′ ∩ Ξ]− = 1, [ΠO6 ∩ Ξ]+ = [ΠO6 ∩ Ξ]− = 1. (3.20)

Therefore, for an O6−-plane we have the zero modes shown in figure 5.

There is still the fermionic coupling

SE2 = τ α̇

(
m ρα̇ − n να̇

)
(3.21)

so that the τ α̇ modes absorb one linear combination of the fermionic zero modes. In

addition the single real bosonic D-term constraint11

m2
1 m−2

−1 − n−2
1 n2

−1 = 0 (3.22)

fixes

m m = n n, (3.23)

11One might expect that similar to the ADHM construction of gauge instantons one has three D-term

constraints. But from the U(1)E and U(1)ws charges in table 5 it is clear that one can build only the neutral

combination in eq. (3.22).
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where the lower index denotes the U(1)ws charge while the upper one refers to U(1)E .

For initially rigid instantons, i.e. in the absence of E2-reparametrisation moduli, there

exist no F-term constraints which would prevent a non-vanishing VEV m m = n n 6= 0

corresponding to brane recombination.

As in the analogous process for chiral intersections, recombination breaks the U(1)E .

The associated gauge degree of freedom can be used to set

m = n (3.24)

as opposed to merely (3.23). Integrating out the τ modes together with the linear combi-

nation µ = ρ − ν of fermionic zero modes as appearing in (3.21) brings down a factor of

m2.

After recombination, one is left with the measure
∫

dMIII =

∫
d4x d2θ d2µ̃

α̇
1/2 dm1 dm−1 m2

1, (3.25)

where again the lower index denotes the U(1)ws charge in the canonical ghost picture and

µ̃
α̇
1/2 = ρ + ν stands for the remaining linear combination of fermionic zero modes. In

addition, there can of course be charged zero modes λa, λb.

Ignoring the additional factor of m2
1 for the moment, this zero mode structure is pre-

cisely that of an O(1) instanton with one deformation b1(Ξ) = 1 of the first type (see

discussion around (2.4))). From our discussion in section 2.3 we expect this configuration

to generate higher fermionic F-terms of Beasley-Witten type.

Extrapolating from the CFT of the E2−E2′ sector before recombination, the relevant

couplings after recombination are inherited from

(m−1ν
α̇
1/2 + n−1ρ

α̇
1/2) λa

−1/2 (ψ1/2)α̇ λ
b
−1/2 −→ m−1µ̃

α̇
1/2λ

a
−1/2 (ψ1/2)α̇ λ

b
−1/2, (3.26)

where the fermionic matter field ψ
α̇
1/2 lives at the intersection D6a − D6b and lies in the

anti-chiral superfield Φ = φ+ τψ. Note that the above coupling does not violate any of the

general N = 2 SCFT selection rules so that even without a direct computation we expect

it to be present for sufficiently generic backgrounds. Integrating out two copies of this

interaction term brings down the fermion bilinear ψ1/2ψ1/2 characteristic for the higher

fermionic terms described in [25] as well as a factor of m2
−1. The bosonic measure can then

be brought into standard form by a simple change of variables with m̃ = m3 and we are

left with
∫

dMIII =

∫
d4x d2θ dm̃1 dm̃−1 ψ1/2ψ1/2. (3.27)

Together with the chiral fermion bilinear pulled by the two θα modes this results in the

four-fermi terms as discussed in section 2.3.

Its bosonic derivative superpartner involves absorbing one pair of θµ in a coupling of

the form (after recombination)

m−1 (τ α̇)3/2 µ̃
α̇
1/2 λa

−1/2 φ−1 λ
b
−1/2. (3.28)
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X

E2

Da Db

Φ

λ

µ

λ (−1/2)
(−1/2)

(−1/2)
(−1/2)

(−1/2)(−1/2)µ (1/2) (1/2)

(0)
(0)

Figure 3: Absorption of µα̇
1/2

for superpotential contributions. The upper indices are the ghost

sectors and the lower ones the Qws charges.

With φ−1 and m−1 in the zero ghost picture12 this generates a derivative for the boson

φ−1. Bringing down two copies of this term indeed yields the derivative superpartner to

the above four-fermi term, again in agreement with [25].

3.4 Contribution to superpotential

It has been observed for world-sheet instantons in the heterotic string that instantons mov-

ing in a family not only generate higher fermionic F-terms, but can also contribute to the

superpotential [41]. Recall that such instantons are dual to E2-instantons with deforma-

tions of the first kind and with a zero mode structure as in (2.4) for each deformation.

As we just saw, recombination of a non-chiral E2-E2′ pair yields precisely such objects.

For superpotential contributions to exist it must be possible to absorb the fermionic zero

modes without generating higher fermionic or derivative terms as in (3.26) or (3.28). A

way to do this for matter field superpotential contributions is shown in figure 3. There µ

denotes the fermionic reparameterisation mode independently of whether the instanton is

the result of recombination or not. In the first case, we should actually replace µ by m−1µ̃

as before.

If this five point function has a contact term and if the remaining integral over the

bosonic instanton moduli space does not vanish, then a contribution to the superpotential

can be generated. We stress again that from a general N = 2 SCFT point of view,

no obvious selection rules forbid such an interaction term. Having said this, one can

easily convince oneself that for factorizable three-cycles on toroidal orbifolds the amplitude

vanishes due to violation of the U(1) worldsheet charge which has to be conserved for each

of the three tori separately. This, however, need not be so for more general setups.

By contrast, it is clear that these disc amplitudes vanish for E2-deformations of the

second kind as defined in [16]. Recall from section 2.3 that these give rise to chiral instead

12Note that for m−1 the PCO can only act non-trivially in the internal part since its vertex does not

carry any momentum.
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of anti-chiral deformation modulini.

To summarize, non-chiral E2 − E2′ recombination results in an object with at least

two bosonic and two fermionic zero modes from a surviving deformation of the first kind of

the recombined instanton. These objects can generate higher fermion couplings and under

certain circumstances can also contribute to the superpotential.

4. F-term correction to complex structure moduli space

Having analysed the consequences of zero modes in the E2 − E2′ sector in addition to

the four Goldstinos for a U(1) instanton, in this section we are interested in the induced

couplings if the uncharged measure merely takes the form

∫
d4x d2θ d2τ (4.1)

in the first place. Consider therefore a rigid U(1) instanton with the geometric intersection

numbers

Ξ′ ∩ Ξ = 0 = ΠO6 ∩ Ξ. (4.2)

This is easily realised e.g. for cycles parallel to, but not on top of the orientiold plane

in some subspace. The uncharged zero mode measure (4.1) is to be supplemented by

additional charged zero modes λ if present. Since there are no zero modes in the E2−E2’

sector which would be sensitive to the orientifold action, we might expect this type of

instantons to be describable in terms of half-BPS instantons of the underlying N = 2

supersymmetry preserved by the internal Calabi-Yau before orientifolding. The correction

to the complex structure moduli space metric by E2-instantons in type IIA Calabi-Yau

compactification has been discussed recently in [51].13 Following this logic, we would

anticipate the generation of E2-corrections to the complex structure Kähler potential by

the U(1) instanton described by (4.1).

However, while the chiral Goldstino modes θ are indeed associated with the breakdown

of the N = 1 subalgebra of this N = 2 symmetry which is preserved by the orientifold,

their anti-chiral partners τ correspond to the orthogonal N = 1 subalgebra. The above

measure (4.1) does therefore not cover the full N = 1 superspace as required for the

generation of a Kähler potential. Rather, the integral is only over half of the N = 1

superspace. While this calls for the generation of an F-term as opposed to a D-term, the

additional fermionic zero modes τ will result in higher fermonic couplings of Beasley-Witten

type discussed in detail in section 2.3.

An important difference to the F-terms discussed previously is that now only the

complex structure moduli receive derivative corrections. Denote by w and a the scalar and

axionic parts of the scalar component U = w − ia of a complex structure superfield. Then

13Recall that the local factorisation of the moduli space describing the vector and hypermultiplets in

general N = 2 compactifications [52] forbids corrections to the Kähler moduli since the dilaton sits in a

hypermulitplet.
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evaluation of the amplitudes 〈θ w τ〉 and 〈θ a τ〉 gives rise to the terms

θ σµ τ̄ ∂µ wi, θ σµ τ̄ ∂µ ai (4.3)

in the moduli action. For the details of this computation in the context of toroidal orbifolds

see appendix B. The absence of analogous terms for the Kähler moduli is a consequence of

U(1) worldsheet charge conservation. Integrating out two copies thereof indeed generates

a derivative coupling of the form e−SE2 ∂U∂U . Together with their fermionic partners, the

derivative F-terms can be summarized by

S =

∫
d4x d2θ e−U(Ξ) fi,j

(
eTi , e∆i

)
Dα̇U i Dα̇U j

+ h.c., (4.4)

where the complex conjugate part is due to the anti-instanton contribution. Note the differ-

ence to eq. (2.7) describing the higher fermionic terms for E2-instantons with deformation

modes. In the presence of charged zero modes λ these F-term corrections for the complex

structure moduli involve appropriate powers of charged open string fields required to soak

up the λ modes. This amounts to replacing e−U(Ξ) → e−U(Ξ)
∏

i Φai,bi
.

5. Flux-induced lifting of zero modes

The additional two zero modes τ α̇ which, if present, prevent the generation of a superpoten-

tial by the instanton, are a consequence of the underlying N = 2 supersymmetry preserved

in the bulk of the Calabi-Yau away from the orientifold plane in the way described in sec-

tion 2. It has therefore been speculated in the literature [12, 13, 6] that these Goldstinos

might be lifted in the presence of suitable background fluxes. An intuitive reason why this

could be the case is that under appropriate circumstances the instanton is expected to feel

only the N = 1 supersymmetry preserved by the flux in the bulk. In such situations the

τ modes are not protected as the Goldstinos of the orthogonal N = 1 supersymmetry and

it might be possible that indeed only the two θα modes remain massless in the universal

zero modes sector.

While our previous presentation has focused on D-brane instantons in Type IIA ori-

entifolds, the natural arena to study the effects of background fluxes is the framework

of Type IIB compactifications, where we can take advantage of the by now quite mature

understanding of a fully consistent incorporation of supersymmetric three-form flux (for

references see e.g. [53, 54]). The lifting of fermionic zero modes by supersymmetric three-

form flux has been analysed in special cases in [28 – 31] in the context of E3-instantons

wrapping a holomorphic divisor of the internal (conformal) Calabi-Yau. The most general

such situation involves the presence also of supersymmetric gauge flux on the worldvolume

E3-brane. This corresponds on the Type IIA side to E2-instantons at general angles with

the O6-plane and is the configuration we are primarily interested in. To the best of our

knowledge the possible consequences of such gauge fluxes on the zero mode structure have

not been analysed explicitly so far. Before addressing the more general case, we review

first the situation of vanishing gauge flux.
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5.1 Zero mode lifting for unmagnetised E3-instantons

In the spirit of [55], we consider Type IIB orientifold compactifications with an N = 1

supersymmetric combination G = F − τH of RR and NS flux F = dC2 and H = dB such

that the complexified dilaton τ = C0 + ie−φ is constant. The internal manifold is therefore

conformally Calabi-Yau with constant warp factor. In order to preserve supersymmetry,

the flux has to be of (2,1) type14 and satisfy the primitivity condition J ∧ G = 0 in terms

of the Kähler form J . We consider an E3-brane wrapping a holomorphic divisor Γ. Since

our interest here focuses on the lifting of τ -modes, we assume that Γ is not invariant under

the holomorphic involution σ defining the orientifold action Ω(−1)FLσ so that the τ -modes

are not projected out. For the simple setup of unmagnetised divisors, we can then simply

identify the instanton with its orientifold image and focus on the instanton action before

orientifolding without further ado.

The part in the E3-brane worldvolume action describing the coupling of such three-

form flux to the (uncharged) zero modes ω15 reads [56, 30]

S =

∫

Γ
d4ζ

√
detg ω

(
e−φ Γm̃∇m̃ +

1

8
G̃m̃ñp Γm̃ñp

)
ω. (5.1)

The combination G̃m̃ñp appearing above is defined as G̃m̃ñp = e−φHm̃ñp + iF ′
m̃ñpγ5 in terms

of F ′
m̃ñp = Fm̃ñp−C0Hm̃ñp and the four-dimensional matrix γ5. The indices m̃, ñ are along

the four-cycle Γ and p is transverse to it. While the above action was derived in [56, 30]

entirely with the help of supergravity methods, one could in principle determine it by

analysing the CFT coupling of the closed string fields to the boundary, see [57 – 60] for the

relevant techniques.

The Euclidean action (5.1) uses a particular gauge fixing condition to eliminate the

unphysical degrees of freedom due to κ-symmetry (cf. eq. 4.9 of [30]). As a result, the

spinor ω is a sixteen-component Weyl spinor since we consider a Euclidean action. Locally,

we can choose complex coordinates a, b = 1, 2 along Γ and z, z for the transverse direction.

It is convenient to use the standard definition of the Clifford vacuum |Ω〉,

Γz|Ω〉 = 0, Γa|Ω〉 = 0 (5.2)

and to decompose the spinor ω into its external and internal part. The latter can be

grouped according to its chirality along the normal bundle of the divisor as

ǫ+ = φ|Ω〉 + φaΓ
a|Ω〉 + φabΓ

ab|Ω〉,
ǫ− = φzΓ

z|Ω〉 + φazΓ
az|Ω〉 + φabzΓ

abz|Ω〉. (5.3)

In this language we can immediately identify the universal fermionic zero modes with

four-dimensional polarisation θα and τ α̇ as given by

ω
(1)
0 = θ ⊗ φ|Ω〉, ω

(2)
0 = τ ⊗ φabzΓ

abz|Ω〉. (5.4)

14In the presence of a non-perturbative superpotential this condition is relaxed to include also (0,3)

components [29].
15The corresponding objects in [30] are called θ, see eq. (4.1.). Recall that we reserve the notation θ and

τ for the four-dimensional spinor associated with the universal zero modes.
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The fact that they are the ”universal” zero modes follows from their correspondence with

the cohomology group H(0,0)(Γ). The remaining components in (5.3) are associated with

the reparametrisation modulini and Wilson line fermions of the four-cycle counted by

H(0,2)(Γ) and H(0,1)(Γ), respectively [61, 30, 62].

Starting from the above action, i.e. in the absence of gauge flux, [30] computed the

remaining zero modes in the presence of primitive (2,1) three-form flux. In particular, their

analysis shows that the four universal zero modes (5.4) are not lifted in such a situation. In

fact, one can easily convince oneself that the zero mode ω
(2)
0 does not couple to primitive

(2,1) flux. e.g.

G̃abzΓ
abzΓ1Γ2Γ3|Ω〉 = G̃abzg

b1gz3ΓaΓ2|Ω〉 − G̃abzg
b2gz3ΓaΓ1|Ω〉

= G̃1bzg
b1gz3Γ1Γ2|Ω〉 + G̃2bzg

b2gz3Γ1Γ2|Ω〉
= G̃abzg

bagz3Γ1Γ2|Ω〉 = 0. (5.5)

The last equation follows from the identity [30]

G̃|Ω〉 = iG|Ω〉 (5.6)

together with primitivity of G,

gcc′Gbcc′ = 0. (5.7)

Likewise, potential (0, 3) components of G-flux can be shown not to couple to the

universal modes. This type of flux is allowed by the equations of motion and supersym-

metric once the non-perturbative superpotential is taken into account in the analysis of

the gravitino variation [63, 29].

5.2 Zero mode lifting for magnetised E3-instantons

We are now ready to address our main question, the inclusion of non-trivial gauge flux on

the instanton. The worldvolume action of the E3-instanton contains, in addition to (5.1),

two pieces linear and quadratic in the gauge invariant combination F = Fgauge − B of

the worldvolume gauge field and Neveu-Schwarz two-form. Since we are considering an

orientifold, we have to add the contribution of the E3-instanton together with its image

under Ω(−1)FLσ. As described in [61], this amounts to considering the instanton wrapping

the divisor Γ̃ = Γ+σΓ and to expand the worldvolume fields, according to their parity under

σ, into their components along the invariant and anti-invariant cohomology on Γ̃. Since F
is anti-invariant under Ω, the linear terms in the action survive only for the components of

F along elements of H−
(1,1)(Γ̃).

Before orientifolding, the relevant part of the quadratic term is the sum of the two
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terms.16 [28]

SDBI = − µ

48

∫

Γ
d4ζ

√
detg ω Γm̃ñp ω e−φHm̃ñp

(
1

4
F2

)
,

SWZ = − µ

48

∫

Γ
ω Γm̃ñp ω (iF ′

m̃ñp)

(
1

2
F ∧ F

)
. (5.8)

In four Euclidean dimensions, solutions to the field equations and Bianchi iden-

tity can be taken to satisfy the self-duality constraint F = ⋆F . Together with∫ √
detg

(
1
4 F2

)
=

∫
1
2F ∧ ⋆F we find that the relevant couplings combine into

− µ

48

∫

Γ
d4ζ

√
detg ω Gm̃ñp Γm̃ñp ω

(
1

4
F2

)
. (5.9)

By the same reasoning as above, this interaction does not induce any mass terms for the

universal zero modes provided we stick to supersymmetric (2,1) (or even (0,3)) flux.

Let us now discuss if the term linear in F saves the day, given in the upstairs geometry

by [28]

S =
µ

16

∫

Γ
d4ζ

√
detg

(
Fĩk̃ ω Γk̃st e−φ H ĩ

st ω − i

2
ǫ
eiejekel Feiej ωΓek

st (F ′)elst
ω

)

= −i
µ

16

∫

Γ
d4ζ

√
detgFeiej ωΓ

eistω g
ejek Gekst

. (5.10)

Again self-duality of the gauge flux, 1
2ǫ

eiejekel Feiej = Fekel, is used and a tilde denotes indices

parallel to the worldvolume, whereas s, t are general internal indices.

While the index structure of the Γ-matrices is still of type (2, 1) due to contraction

with the hermitian metric, the above action may in principle induce non-vanishing couplings

involving the universal modes. After all, the vanishing of such couplings in the absence

of gauge flux rested also upon primitivity of G3, which is not necessarily satisfied by the

combination of F and G3 contracted with the Γ in (5.10). As we stressed, these couplings,

being linear in F , only survive the orientifold action in the presence of anti-invariant two-

cycles on the divisor Γ̃. We will illustrate this issue in more detail in the next subsection.

On the other hand, in the absence of such cycles, as e.g. for the T 6/Z2 example studied

in [67], the τ -modes remain massless even after taking into account the backreaction of the

three-form flux on the instanton moduli action. While this may seem counter-intuitive

because they are no longer protected as Goldstinos in the presence of three-form flux, this

is just an example of the familiar fact even though all symmetries broken by the instanton

result in associated zero modes, the converse need not be true.

16Note that for simplicity, we are using here the gauge of [28], eq. (29). This κ−symmetry fixing is

different from the one in which (5.1) is written and corresponds essentially to the one of [64, 65]. As

emphasized in [30, 66] the gauge fixing condition and the orientifold projection have to be compatible for

branes invariant under the orientifold. Since we are interested in the more general situation of non-invariant

branes or instantons, it suffices for our purposes to work in the gauge of [28].
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5.3 A simple example with linear gauge fields

In the presence of suitable three-form flux and for non-vanishing gauge flux F , the linear

term in F leads to a coupling of the zero mode ω
(2)
0 proportional to

GabzF
bagz3Γ1Γ2|Ω〉. (5.11)

As stated above, this does not vanish directly due the primitivity condition for G-flux and

the hermitian Yang-Mills equation for the gauge flux F . Under the orientifold projection

the flux components F ∈ H+
1,1(Γ̃) are mapped to −F and the associated terms in (5.11)

vanish trivially. But for the components F ∈ H−
1,1(Γ̃) there is a chance that the zero modes

ω
(0)
2 become massive.

More precisely, the action (5.10) leads to a coupling between ω
(2)
0 and the mode

φabΓ
ab|Ω〉. Integrating out the two types of zero modes lifts both the extra universal

modes and the deformation modes φabΓ
ab|Ω〉. For this mechanism to work, the deforma-

tions associated with φabΓ
ab|Ω〉 have to be unobstructed, of course. On the other hand,

the topological index N+ −N− counting the difference between zero modes of positive and

negative chirality with respect to the normal bundle of the divisor (see discussion around

eq. 5.3) remains unchanged. This is reassuring as by turning on suitable background B-

field in addition to the gauge flux we may continuously set the quantity F appearing in

the coupling (5.10) to zero, which should not change any topological quantities.

Let us illustrate this in a simple local example on a toroidal orientifold. We compactify

Type IIB on T 6 with metric

ds2 =
∑

I

dzI dzI (5.12)

and mod out by the orientifold projection Ωσ(−1)FL with σ : z2 → −z2. Ignoring the

resulting tadpole cancellation conditions for a second, we now turn on Ωσ(−1)FL invariant

G3-form flux. Consider an E3-brane in this background on the divisor Γ given by the first

two T 2s times a point on the third one. For vanishing Wilson line along the first T 2, Γ

is invariant under the orientifold projection and the instanton is of type O(1). Since we

are interested in lifting the τ -modes we assume the presence of a Wilson line rendering the

instanton non-invariant.

On this E3-brane we turn on constant gauge flux of type

F 12 ∈ H−
1,1(Γ̃), (5.13)

with Γ̃ = Γ + σΓ as before. This flux is invariant under the orientifold projection and

satisfies the HYM equation. Consistently, the brane couples to the likewise invariant two-

form (C2)1,2.

Then the coupling of the zero mode ω
(2)
0 on the instanton is proportional to

GabzF
ab = G123F

12, (5.14)
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which can be non-vanishing. Indeed the flux component G123 is invariant under the ori-

entifold projection. This simple example shows that, ignoring tadpole constraints, it is

possible that the ω
(2)
0 modes decouple for non-vanishing G3 form flux.

However, when it comes to satisfying the tadpole constraints, we have to introduce

both further D7-branes to cancel the O7-plane tadpole and an O3-plane to cancel the

tadpole induced by the G3-form. The easiest way to get the O3-plane is to also mod

out the model by the Z2 action z1,3 → −z1,3, essentially turning the configuration into

the fluxed K3 × T 2

Z2
model studied in [68]. However, in this case the E3 is not invariant

under this Z2, but mapped to an E3 brane with opposite gauge flux −F 12. Therefore, the

coupling of the ω
(2)
0 modes again trivially vanishes. We leave it for future work to study

more general concrete global models of such a configuration in detail and to verify if the

τ -modes can actually be lifted.

6. Conclusions

This paper has investigated in detail under which circumstances D-brane instantons can

contribute to the superpotential in Type II orientifolds. A key role is played by the two

universal zero modes τ which are a remnant of the local N = 2 supersymmetry felt by in-

stantons not invariant under the orientifold action. Their presence obstructs the generation

of a superpotential. If these modes are not lifted and in the absence of additional zero modes

between the instanton and its orientifold image, the instanton generates higher-fermionic

F-term corrections which in general depend also on open string operators. Previously, such

terms had been considered in the context of heterotic worldsheet instantons moving in a

family [25].

Our main interest has been in possible mechanisms to lift the τ modes such that

superpotential contributions are possible. Clearly, this question is of significance for an

analysis of the quantum corrected moduli space of string vacua as well as for determining

the effective interactions in the vacuum.

We first focused on an effect which, for E2-instantons in Type IIA orientifolds, is de-

scribable as recombination of the instanton with its orientifold image. Equivalently, we

asked whether in the Type IIB/Type I dual picture E5-instantons carrying non-trivial

extension bundles generate superpotential couplings. If so, this would have important con-

sequences also for the heterotic string. We found that while the τ -modes are indeed absent

in such situations, there arise generically additional charged zero modes which cannot be

lifted, thus obstructing a contribution to the effective action. By contrast, for the special

case that the instanton and its orientifold image preserve a common N = 1 supersymmetry,

no such zero modes arise and the recombined object can generate a superpotential provided

its reparametrisation moduli can be lifted. For general Calabi-Yau manifolds, we identified

appropriate open-string dependent couplings in the instanton moduli action. Their pres-

ence hinges upon the details of the underlying N = (2, 2) superconformal worldsheet theory.

These couplings generalise known examples of the lifting of instanton reparameterisation

modulini through curvature couplings or background fluxes.
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Concerning this latter point, we tried to substantiate the well-motivated specula-

tion [12, 13, 6] that closed string background fluxes might also lift the universal τ modes,

restricting ourselves to the familiar framework of Type IIB orientifolds with supersymmet-

ric three-form flux. In agreement with the results in particular of [30], in the absence of

gauge flux on the E3-instanton no such lifting occurs. We showed, building on the in-

stanton action derived in [28], that once worldvolume fluxes are turned, a lifting might be

possible, but only in situations where the divisor wrapped by the instanton contains non-

trivial two-cycles anti-invariant under the orientifold action. As it stands we have to leave

it open whether this effect can actually be realised in explicit models and, if so, whether

it enables the instanton to contribute to the superpotential. As one of the most imminent

open questions it therefore remains to study a concrete global example in the spirit of

the setup discussed in the last section. Also, it would be desirable to gain comparable

understanding of the effects of Type IIA fluxes on the E2-instanton zero modes.
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esano, S. Moster, E. Plauschinn, M. Schmidt-Sommerfeld, S. Stieberger, G. Shiu, D. Tong

and A. Uranga for interesting discussions as well as L. Dixon for helpful correspondence.

R.B. thanks the University of Pennsylvania for hospitality. M.C., R.R. and T.W. are grate-

ful to ASC and Max-Planck-Institut für Physik, Munich, as well as to CERN for hospitality.

This research was supported in part by DOE grant DOE-EY-76-02-3071 and the Fay R.

and Eugene L. Langberg Endowed Chair.

A. Orientifold projection of instanton zero modes

In this appendix we describe explicitly the orientifold action Ωσ on the zero modes of an

E2-instanton wrapping the cycle Ξ. If Ξ is not invariant under the orientifold action one

includes, in the upstairs picture, the orientifold image E2′ wrapping the image cycle Ξ′. The

orientifold action identifies the E2−E2 modes with the E2′−E2′ modes and E2−E2′-modes

with E2′ −E2-modes. The E2−E2′ modes arising at invariant intersections on top of the

orientifold plane are symmetrised/anti-symmetrised as will be described momentarily. The

same applies to the E2−E2 sector if the E2 wraps a cycle invariant under the orientifold

action, Ξ = Ξ′.

The orientifold action on the bosonic and fermionic instanton zero modes in the in-

variant sector can be deduced from the action on spacetime-filling D6-branes wrapping the

same internal cycle Ξ (and possibly its image) as follows:

1. The orientifold action on the internal oscillator part of the vertex operators agrees in

the D6 and E2 case. The only difference in the E2 case is that the external 4D space

is orthogonal to the E2-brane and thus counts as transverse when applying the usual

rules for representing Ωσ. This entails the inclusion of an additional minus sign for

bosonic excitations in the external 4D space and the inclusion of a factor eiπ(s0+s1)
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for all fermionic zero modes. Here eiπ(s0+s1) acts on the (anti-)chiral 4D spin fields

Sα (Sα̇) as eiπ(s0+s1)Sα = −1 ( eiπ(s0+s1)Sα̇ = 1).

2. Let γΩσ,D6 denote the matrix representing the orientifold action on the CP factors

of the D6-brane modes. Then the corresponding matrix for the E2-instanton γΩσ,E2

enjoys

γΩσ,D6 = ±γT
Ωσ,D6 ⇐⇒ γΩσ,E2 = ∓γT

Ωσ,E2. (A.1)

The + and - cases for the projection relevant for D6-branes are referred to as or-

thogonal (SO) and symplectic (SP) projections, respectively, because for invariant

D6-branes they yield gauge bosons in the adjoint of the respective gauge groups. In

the latter case, invariant cycles have to be wrapped by an even number of D6-branes.

Finally, the relation (A.1) follows via T-duality from the D9-D5 system analysed by

Gimon-Polchinski [69].

It is straightforward to apply these rules to the zero modes for two different cases: (i) the

universal zero modes for ΠΞ = ΠΞ′ and (ii) the modes in the E2 − E2′ sector arising on

top of the orientifold for ΠΞ 6= ΠΞ′ . In case the instanton wraps a cycle ΠΞ = ΠΞ′ the

orientifold action on the universal zero modes xµ and θα, τ α̇ leads to

Ωxµ = γE2Ω
T
xµγ−1

E2 , (A.2)

Ωθα = γE2Ω
T
θαγ−1

E2 , Ωτ α̇ = −γE2Ω
T
τ α̇γ−1

E2 , (A.3)

where for xµ and θα the minus sign due to the excitation gets cancelled by the minus sign

due to rule (1). Thus for a single instanton subject to the projection γE2 = γT
E2, only

xµ and θα survive. Modes in the E2 − E2′-sector arising at intersection on top of the

orientifold get (anti-)symmetrised as follows:

• If for D6-branes wrapping the same cycle the invariant states get anti-symmetrised,

then

Ωm/m = ΩT
m/m, Ωµ = ΩT

µ , (A.4)

Ωµ = −ΩT
µ . (A.5)

This results in the intersection numbers displayed in table 4. In particular, for a

single instanton, the zero mode µα gets projected out and only m,m,µα̇ survive

corresponding to case I in section 3.1

• If for D6-branes the invariant states are symmetrised, everything just changes sign.

B. Details of the CFT computations

In this appendix we demonstrate the computation of the amplitude 〈m τ µ〉 as well as of

some of the couplings of the fermionic zero modes of the instanton to the closed string
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background relevant for the F-term corrections investigated in section 2.3 and 4. For

simplicity we focus on the case of an instanton wrapping a factorizable cycle of a toroidal

orbifold. More details of the CFT computation in this context can be found in [15]. While

for other backgrounds the presence of the couplings in question has to be checked in concrete

computations, all couplings which do not violate any of the general selection rules of the

N = 2 SCFT on the worldsheet are generically present.

Let us start with the open string coupling 〈m τ µ〉 used in eq. 3.12. The relevant vertex

operators take the form17

V
(− 1

2
)

τ̄ (z) = Ωτ̄ τ̄ α̇ Sα̇(z)
3∏

i=1

e−i/2 Hi(z) e−ϕ/2(z)

V (−1)
m (z) = Ωm m

3∏

i=1

ei(1−θi
E2E2′

) Hi(z) e−ϕ(z) (B.1)

V
(− 1

2
)

µ̄ (z) = Ωµ̄ µ̄α̇ Sα̇(z)
3∏

i=1

e−i( 1

2
−θi

E2E2′
) Hi(z) e−ϕ(z).

Inserting them into 〈m τ µ〉 leads to

〈m τ µ〉 = Tr(Ωm Ωτ̄ Ωµ̄)m τ̄ α̇ µ̄β̇ < e−ϕ(z1) eϕ/2(z2) e−ϕ/2(z3) >

< Sα̇(z1)Sβ̇(z3) >
3∏

i=1

< ei(1−θi
E2E2′

) Hi(z1) e−i/2 Hi(z2) e−i( 1

2
−θi

E2E2′
) Hi(z) >,

which together with the supersymmetry condition
∑3

i=1 θi
E2E2′ = 2 results in the coupling

m τ̄α̇ µ̄α̇. (B.2)

Now we turn to interactions between fermionic zero modes of the instanton and closed

string background fields. We start with the coupling between the reparametrization mod-

ulini χ̄α̇ surviving the orientifold action and the anti-chiral Kähler modulini t̄α̇. Their

vertex operator in type IIA takes the form

V
(− 1

2
)

χ̄I (z) = Ωχ̄ χ̄I α̇ e−ϕ/2(z) Sα̇(z) e−i/2HI (z)
3∏

i6=I

ei/2Hi(z), (B.3)

V
(− 1

2
,−1)

t̄IJ
(z) = t̄IJ α̇ e−ϕ/2(z) Sα̇(z) e−i/2HI (z)

3∏

i6=I

ei/2 Hi(z) e−ϕ̃(z̄) e−iH̃J (z̄)(z̄) eikX(z,z̄).

(B.4)

Note that on a factorizable torus T 6 = T 2 × T 2 × T 2 only the diagonal moduli t̄JJ survive.

We see that the couplings 〈χ t〉 respect the total U(1) worldsheet charge. However,

only the amplitudes < χ̄I t̄JK > for I 6= J 6= K 6= I preserve the internal U(1)-charge in

each T 2 separately and lead to a coupling

χ̄I
α̇ t̄JK α̇. (B.5)

17Here we assume the most symmetric configuration in which all intersection angles θ
i
E2E2′

> 0 and
P

3

i=1
θ

i
E2E2′

= 2.
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While on factorizable tori (T 2)3 and orbifolds thereof no such couplings exist, on general

Calabi-Yau threefolds there is no reason for them to vanish.

On the other hand, one can convince oneself that the anti-chiral complex structure

modulini with vertex operators

V
(− 1

2
,−1)

ūIJ(z)
= ūIJ α̇ e−ϕ/2(z) Sα̇(z) e−i/2HI (z)

3∏

i6=I

ei/2 Hi(z) e−ϕ̃(z̄) eiH̃J (z̄)(z̄) eikX(z,z̄) (B.6)

do not couple to χ̄ due to non conversation of the total U(1) world sheet charge. This is

therefore a universal result.

The corresponding bosonic superpartner terms to (B.5) arise from amplitudes of the

form

< θ(+1/2)T̄ (−1,−1)χ̄(−1/2) > , (B.7)

where the superscripts denote ghost picture of the respective vertex operator. Note that

with the choice displayed in (B.7) we ensure the total ghost charge constraint. The vertex

operator of the Kähler moduli takes the form

V
(−1,−1)

T̄ IJ
= T̄ IJe−ϕ(z) e−iHI(z) e−ϕ̃(z̄) e−iH̃J (z̄) eikX(z,z̄)

while the one for the θ-mode in (+1
2 )-ghost picture is given by

V
(+ 1

2
)

θα (z) = Ωθ θα

[
∂Xµ (σµ) α̇

α Sα̇(z)

3∏

i=1

ei/2 Hi(z)

+
3∑

I=1

Sα(z)∂ZIe−i/2HI (z)
∏

i6=I

ei/2Hi(z)

]
eϕ/2(z). (B.8)

By internal U(1) charge conservation only the first summand contributes to the amplitude

and in addition one has to require, as for < χ̄ t̄ >, that I 6= J 6= K 6= I. Then

< θ T̄ JK χ̄I > = Tr(Ωθ Ωχ̄) θα(σµ) α̇
α χ̄I β̇ T̄ JK

< eϕ/2(z1) e−ϕ(z2) e−ϕ̃(z̄2) e−ϕ/2(z3) >< Sα̇(z1)Sβ̇(z3) >

< ei/2HI (z1) e−i/2HI (z3) >< ei/2HJ (z1) e−iHJ (z2)ei/2HJ (z3) >

< ei/2HK (z1) e−iH̃K(z̄2)ei/2HK (z3) >< ∂Xµ(z1) eik2X(z2,z̄2) > .

The correlators are easily evaluated and lead to couplings proportional to

θ σµ χ̄I ∂µ T̄ JK.

As above, by non-conservation of U(1)-charge there is no coupling to the bosonic complex

structure field U . On the other hand the amplitude < θuIJ > is non-vanishing. Here the

vertex operator of uIJ is the complex conjugated of (B.6)

V
(− 1

2
,−1)

uIJ
(z) = uIJ

α e−ϕ/2(z) Sα(z) ei/2HI (z)
3∏

i6=I

e−i/2 Hi(z) e−ϕ̃(z̄) e−iH̃J (z̄)(z̄) eikX(z,z̄)
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and the vertex operator for θ in (−1
2)-ghost picture takes the form

V
(− 1

2
)

θ (z) = Ωθ θα Sα(z)

3∏

i=1

ei/2 Hi(z) e−ϕ/2(z). (B.9)

Now, one can easily check that U(1) world sheet charge is conserved only in case I = J

and the resulting coupling takes the form

θα uII
α . (B.10)

For the couplings relevant in section 4 we also need the corresponding bosonic partner

arise from amplitudes involving aIJ and ω̄IJ. For brevity we only display the computation

of the amplitude < θ(1/2)ω̄(−1,−1)τ (−1/2) >, where the vertex operator for ω̄ is

V
(−1,−1)

ω̄IJ (z) = ω̄IJe−ϕ(z) eiHI (z) e−ϕ̃(z̄) e−iH̃J (z̄) eikX(z,z̄) , (B.11)

while the vertex operator for the θ and τ̄ in the respective ghost picture are given by (B.8)

and (B.1). Again U(1) world sheet charge requires I = J and a computation analogous to

the one leading to the amplitude < θ T̄ χ̄ > gives the coupling

θ σµ τ̄ ∂µ ω̄II. (B.12)

On the other hand due to the U(1) world-sheet charge there the amplitudes < τ̄ t̄ > as well

as < θ T̄ τ̄ > vanish.
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[20] M. Billó et al., Classical gauge instantons from open strings, JHEP 02 (2003) 045

[hep-th/0211250].

[21] P. Anastasopoulos, T.P.T. Dijkstra, E. Kiritsis and A.N. Schellekens, Orientifolds,

hypercharge embeddings and the standard model, Nucl. Phys. B 759 (2006) 83

[hep-th/0605226].

[22] R. Blumenhagen and E. Plauschinn, Intersecting D-branes on shift Z2 × Z2 orientifolds,

JHEP 08 (2006) 031 [hep-th/0604033].

[23] E. Dudas and C. Timirgaziu, Internal magnetic fields and supersymmetry in orientifolds,

Nucl. Phys. B 716 (2005) 65 [hep-th/0502085].
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[58] D. Lüst, P. Mayr, R. Richter and S. Stieberger, Scattering of gauge, matter and moduli fields

from intersecting branes, Nucl. Phys. B 696 (2004) 205 [hep-th/0404134].
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